Introduction to PROLOG
for NLP applications

J. Savoy
Université de Neuchatel

A. Gal, G. Lapalme, P. Saint-Dizier, H. Somers : Prolog for
natural language processing. John Wiley & Sons, Chichester
(UK).

W. F. Clocksin, C. S. Mellish: Programming in Prolog. Springer
Verlag, Berlin.

Prolog

e Acronym for
Programmation Logique (Logic Programming)
Alain Colmerauer, 1970

e Very different than other programming languages.
A new paradigm (e.g., imperative, functional, object-
oriented, parallel, etc.)

e Do not specify "now" to resolve a problem (algorithm).
Specify what is true (facts) or
how we can prove it is true (rules)

e Freely available SWI-Prolog (Amsterdam)

Syntax of Prolog

e Syntax
p <~ qlr q2/ C_[3-

e Semantics
p is true if g1 is true, and g2 is true, and g3 is true.

e Head of the rule: p
Body: the propositions g1, g2, g3
(in this case, they are literals)

e The symbol : - means "if" (the head is true if ...)
the comma , separating the conditions (this is a "and")
the final stop (.)

Predicate

e Predicate
Function (relation) that is true/false
Composed of a name (with / without argument(s))
Example

P

qZ2

and argument(s)

Add parenthesis and if needed, the comma
blue (sky)

love (mary, john)

give (paul, mary, book)

Predicate

e Facts
A rule that is always true (or a rule without any condition)

happy (john) .
human (paul) .

e Rules
It is true if a given set of conditions are true
happy (P) :- healthy(P), wise(P), rich(P).
happy (P) :- student (P).

e The relation happy Iis true in two distinct cases.

Terms

e Terms
The name of predicate arguments are terms.

Atomic symbols (numbers or begin with a lowercase)
Use to define specific object (constants)
mary, book, 3.15, -8, sing,

Variables (begin with an uppercase or an underscore)
Define objects waiting to be bounded
X, Someone, Mary89, C23, 9,

Compound terms (structure)

A functor (predicate name) and its arguments

aime (jean, marie), happy(john),

np (adj (white), nn(house)), .. 6

Terms

e Terms
The name of the arguments are terms.

Atomic symbols (numbers or begin with a lowercase)
define a given specific object (always the same)
mary, book, 3.15, -8, sing,

Variables (begin with an uppercase or underscore
(objects waiting to be bounded)
X, Someone, Mary89, C23, 9,

Compound terms

(a functor (predicate name) (atomic) and its arguments)
aime (jean, marie), happy(john),

np (adj (white), nn(house)), .. 7

Terms

e The order is important (but free)

e Graphical representation of compound terms
np (det (the), nn(cat))

@

the cat °

Terms

e Graphical representation of a compound term
s (np (det (the), nn(cat)),
vp (v (eats), np(det(the), nn (mouse)))).

np vVp
det nn -Vz///\\\\ﬁnp
e
cat cats det nn
{ {

the mouse

Prolog

e A simple program: enumerate facts and rules.
determiner (the) .
determiner (this) .
determiner (these) .
noun (cat) .
noun (mice) .
noun (sheep) .
adjective (lazy) .
number (this, singular) .
number (these,plural) .
number (cat, singular) .
number (mice,plural) .
number (sheep,).
number (the,).

10

Prolog

e And the rules (with comments!)

5 Agreement between two words
agree (Wordl,Word2) :- number (Wordl,N),
number (Word2, N).

% How to form noun phrase

np (Mod, Gov) :- determiner (Mod),
noun (Gov), agree (Mod, Gov).
np (Mod, Gov) :- adjective (Mod), noun (Gov) .

e The order of the rule is important

e \We must give all the possible definitions of a rule together

11

Prolog

e Usually it is a good idea to regroup all facts and rules of a
given project into the same file (with the extension .pl)

e You can edit this file with your own editor (text only)
e You can launch the Prolog interpreter, by

machines swipl

Welcome to SWI-Prolog (Multi-threaded, 32 bits, Ver 5.6.64)
Copyright (c) 1990-2008 University of Amsterdam.

SWI-Prolog comes with ABSOLUTELY NO WARRANTY. This 1is free
software,and you are welcome to redistribute i1t under certain
conditions.

Please visit http://www.swi-prolog.org for details.

For help, use ?- help(Topic). or ?- apropos (Word).
12

Prolog

e With your PC, you have a directory "Program Files" where is
located the directory "p1" (containing the SWI Prolog). Inside
the "pl" folder, you can find the "bin" folder containing the
executable program plwin.exe. You can create a shortcut
to this program.

>double clik on "plwin.exes"

Welcome to SWI-Prolog (Multi-threaded, 32 bits, Ver 5.6.64)
Copyright (c) 1990-2008 University of Amsterdam.

SWI-Prolog comes with ABSOLUTELY NO WARRANTY. This 1is free
software,and you are welcome to redistribute it under certain
conditions.

Please visit http://www.swi-prolog.org for details.

For help, use ?- help(Topic). or ?- apropos (Word). 13

Prolog

e After launching the Prolog interpreter, the system will
prompt as

| 2-

e You can load the corresponding file (or program) with the
predicate

?— consult('afilename.pl').
?- ['afilename.pl'].

?— reconsult('afilename.pl').
e and enter quit to end the session.
| ?— halt.

14

Prolog

e With our first program and closed questions (goal)
| ?— noun (cat) .
true.
| 7= noun (bird) .
false.
| ?— agree(this, cat).
true.
| ?— agree (cat,mice).
false.

e Closed world assumption: if we cannot prove something, it
is false.

e Prolog may return all possible answers (ways) to prove the
goal. 15

Prolog

e With our first program and open questions

| 77— number (cat, N).
N = singular.

| 7— number (mice, M).
M = plural.

| ?7— number (Mot, singular) .
Mot = this ;

Mot = cat ;

Mot = sheep ;

Mot = the.

16

Unification in Prolog

e More than a pattern matching
The interpreter tries to render both parts equals

1. An un instantiated variable will unify with any object. As a
result, that object will be what the variable stands for.

2. Otherwise, an integer or atom will unify with only itself.

3. Otherwise, a compound term will unify wit another
compound with

the same functor (name),
the same number of arguments,
and all corresponding arguments must unify.

17

Prolog

e More complex questions

| 7= number (Word, singular), noun (Word).
Word = cat ;
Word = sheep ;

false.
| 7— number (mice, G).
G = plural.

e To answer a given goal, Prolog unifies part of the question
with its database. The returned answer is the substitution
(or condition) that renders valid (proven) the question.

18

List in Prolog

e Special (predefined) predicate useful to manipulate an
arbitrary number of objects (elements) such as the words in
a sentence.

e Usethe [] operator
and separate the elements by a comma

e Examples of enumerated lists

o)

[jJjohn] % list with one element

[john, mary] $ list with two elements

] % Empty list (no element)

[john, 23, C] 5 list with three elements

s (np,vp), john] % list with two elements

19

List in Prolog

e As the number of element is not known, we need to
manipulate a list with a second constructor

e Use the head-tail[..|...] notation
usually with variables as in [H| T]
where H design the first element
and T the tail (a list without the first element)

e Examples
la,b,c] = [H|T]
$ H = a, T = [b,c].
l[a,b] = [H|T]
$ H = a, T = [b].
[a] = [H|T]
$ H = a, T = [].

20

Predicate with Lists

e How can we count the number of element in a list.

e Example
length([a,b,c],N)
N = 3.
length ([],N)

N = 0.
length (n, N)

ERROR: length/2: Type error: " 1ist'
expected, found n'.

®)

% The definition (already given 1in SWI)
length([],0).

length ([H|T], N) :- length(T,N1), N 1s NI+1.

Predicate with Lists

e [0 concatenate two lists

e Example

append(la,b,c], [d,e], L)

L = [a,b,c,d,e].

append([la,b,c],L, [a,b,c,d,e])

L = [d,e].

% The definition

append([],L,L) .

append ([H|T],L, [H|Ts]) :- append(T,L,Ts).

22

Grammar, version 0

e A first example in French.
The vocabulary used and its corresponding POS

det ([le]) .
det ([la]) .

n([souris]).
n([chat]).

v ([mange]) .
v([trottine]) .

We will limit ourselves to this rather small vocabulary.
We have use list to represent each word.

23

Grammar, version 0

e A minimal French syntax

p(L) :- sn(Ll), sv(L2), append(Ll,LZ2,L).

sn(L) :- det(Ll), n(L2), append(Ll,L2,L).
sv(L) := v(L).

sv(L) :- v(Ll), sn(L2), append(Ll,L2,L).

e A sentence (predicate p) is composed first by a noun phrase
(predicate sn) followed by a verb phrase (predicate sv).

e A noun phrase owns a single form (a single rule), a determinant
followed by a noun.

e A verb phrase could be a single verb (predicate v) or a verb followed
by a noun phrase.

e In all cases, if we found at the beginning of the list (of words) what we
need, we remove it (see the vocabulary).

24

Grammar, version 0

e Example

p(lle, chat, mange]).
true ;
false.

p(lla, souris, trottine]).

true ;
false.

p(lla, souris, Action]).
Action = mange ;

Action = trottine ;
false.

25

Grammar, version 0

e Generate all possible sentences
| 7= p(S).

N »1h ”h \”h \”n ”n O”n
|

[1le,
[le,
[1le,
[1e,
[1e,
[le,
[1le,

souris,
souris,
souris,
sourilis,
souris,
souris,
souris,

mange] ;

trottine] ;

mange, le, souris] ;
mange, le, chat] ;
mange, la, souris] ;
mange, la, chat] ;
trottine, le, souris] ;

e \We can thus use our program to parse a sentence
(according to our minimal syntax of French) or to generate
sentences (according to this grammar). 2

Grammar, version 0

e Problems

e The first solution is ad hoc.
Usually we prefer the following computational model:
Input: using one parameter (term/ list)
Output: return information in another parameter (list).

e Difficult to extent this program to include other features
agreement between the determinant and the noun
agreement between the subject and the verb

agreement between the transitive verb and the
complement

output the POS and/or the parsed tree

27

Grammar, version 1

e We will use the list difference approach. The first list
indicates the input elements (of words) and the second the

output list.

p(LO,L) :- sn(LO,L1), sv(L1,L).

sn(LO,L) :- det(LO,L1), n(L1l,L).
sv(LO,L) :- v(LO,L).

sv(LO,L) :- v(LO,L1), sn(Ll,L).

e If the parsing is possible, . = [].

e In the syntactic elements, we transform the input list (by
removing elements corresponding to the analyzed
syntactic variable). More than one solution may exist (and
the Prolog interpreter will explore them).

28

Grammar, version 1

e \We store the vocabulary using the difference list.

det (LO, L)
det (LO, L)

n(LO,L) :-

()
v(LO,L) :-
()

:— terminal (le,LO,L).
:— terminal(la,LO,L).

terminal (souris, L0, L) .
terminal (chat,LO,L).
terminal (mange, LO, L) .
terminal (trottine,LO, L) .

terminal (Word, [Word|L],L).

e \We remove the corresponding word from the head of the
list and return the input list minus this word.

29

Grammar, version 1

e Examples

?- p([le, chat, mange],L).

L =1[] ;

false.

?— p(lle, chat

R = [mange] ;

= [trottine]

= [mange, le,
= [mange, le,
= [mange, la,
= [mange, la,
= [trottine,

= [trottine,

= [trottine,

= [trottine,

false.

Zv >V IS VR v w RS V> v B>V R v

o
/4

| RI,[]).

souris] ;
chat] ;
souris] ;
chat] ;

le,
le,
la,
la,

souris] ;
chat] ;
souris] ;
chat] ;

30

Grammar, version 1

e Problems?

e No agreement between the determinant and the noun (or
between the subject and the verb, not needed however In
our very simple vocabulary)

Examples
"la chat trottine" (*)
"le chat mange le souris” (*)

e A verb could be intransitive (without direct object). We do
not consider this constraint in our solution.
"le chat trottine la souris" (*)

31

Grammar, version 2

e We still use the list difference approach. We add the
constraint about the agreement (gender) between the
determinant and the noun. For the verb, we take account
that intransitive verb cannot have a complement.

p(LO,L) :- sn(LO,L1), sv(L1,L).
sn(LO,L) :- det (Genre,LO,L1l),

n(Genre,Ll,L).
sv(LO,L) :-= v(,LO,L).

sv(LO,L) :- v(transitif,LO,Ll), sn(L1l,L).

32

000
00
(| X J
. o
Grammar, version 2
e And the new vocabulary with its attributes (gender,
transitivity).
det (masculin,LO,L) :- terminal(le,LO,L).
det (feminin,LO,L) :- terminal(la,LO,L).
n(feminin,LO0,L) :- terminal (souris,LO,L).
n (masculin,LO,L) :- terminal (chat,LO,L).
v(transitif,LO,L) :- terminal (mange,lL0,L).
v(intransitif,L0,L) :—-terminal (trottine, L0, L) .

terminal (Mot, [Mot|L],L).

e \We discriminate between feminine and masculine nouns and
determinant.

e A verb can be transitive or intransitive

33

Grammar, version 2

e Example

?— p(lle,chat,mange], []) .

true ;
false.

?— p(lla,chat,mange], []) .

false.

?- p([le,chat | R], []).
R = [mange] ;

R = [trottine] ;

R = [mange, le, chat] ;
R = [mange, la, souris]
false.

e Every thing is OK?

o
/

34

Grammar, version 2

e Problems

e \We want more than just a binary answer (correct, failure)
but the parsing tree

e |t makes no sense to accept stupid sentences such as
"le chat mange le chat" (*)
The subject and the complement are the same!

e \We need to introduce semantic constraints
"la souris mange le chat" (*)

35

Grammar, version 3

e The final example is more complex. We return the parsing

tree.

p (ph (SN _Struct,SV_Struct),LO,L) :-
sn (SN Struct,LO,L1),
sv(SV_Struct,Ll, L),
% be sure that the 2 SN are differents
not (SV_Struct = svb(,SN Struct)).

sn (snm(Det Struct,N Struct),LO0,L) :-
det (Det Struct, Genre,L0,L1), n(N Struct,Genre,Ll,L).
sv (svb (vb (Mot)),L0,L) :- v(vb(Mot,), ,LO,L).
sv (svb (vb (Mot),SN Struct),LO,L) :-
v (vb (Mot,Comp) , transitif,L0,L1l), sn(SN Struct,Ll,L),
% check that the complement i1s valid
SN Struct = snm(,nm(Nom)), extract the noun
T =.. [Comp,Nom], built the predicate
call(T). call it

o°® o o\©

36

Grammar, version 3

e The vocabulary
det (dt (1le) ,masculin,LO,L) :- terminal (le,LO,L).
det (dt (1la), feminin, LO, L) :— terminal(la,LO,L).
n(nm(souris), feminin,LO,L) :-
terminal (souris, L0, L) .
n (nm(chat) ,masculin, LO, L) :— terminal (chat,LO,L).

v (vb (mange, prey), transitif,LO0,L) :-
terminal (mange, LO, L) .
v (vb (trottine,),intransitif,LO,L) :-
terminal (trottine, L0, L) .

terminal (Mot, [Mot|L],L).
e And the semantic predicates

prey (souris) .

37

Grammar, version 3

e Example

?—- p(S, [le,chat, trottine], []) .
S = ph(snm(dt(le), nm(chat)), svb(vb(trottine))) ;
false.

?- p(Struct, [le,chat,mange, la, souris], []) .

Struct = ph(snm(dt(le), nm(chat)), svb(vb(mange),
snm(dt (la), nm(souris)))) ;

false.

?- p(S,[le,chat | R],[]).

= ph(snm(dt (le), nm(chat)), svb(vb(mange)))

= [mange] ;

ph (snm(dt (le), nm(chat)), svb(vb(trottine)))
= [trottine] ;

= ph(snm(dt (le), nm(chat)), svb(vb (mange),
snm(dt (1la), nm(souris))))

R = [mange, la, souris] ;

false.

\h 0 I O©0
I

38

Conclusion

e PROLOG is very useful to analyze (parse) or to generate
sentences according to a syntax.

e \We may work on the vocabulary (and the corresponding
POS and grammatical categories) on the one hand, and
on the other on the syntax.

e Difference list is a powerful strategy in parsing.

e PROLOG is however not very useful for input/output
operations.

39

